Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Some More Critical Section Solutions

Johannes Åman Pohjola CSE, UNSW Term 2 2022

1

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Where we are at

We've discussed the critical section problem, the four properties of critical section solutions, and some solutions for two processes.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Where we are at

We've discussed the critical section problem, the four properties of critical section solutions, and some solutions for two processes.

In this lecture, we will see some of the classic critical section solutions for n processes.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

More liveness desiderata:

• Eventual Entry (or *starvation-freedom*) Once a process enters its pre-protocol, it will eventually be able to execute its critical section.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

More liveness desiderata:

- Eventual Entry (or *starvation-freedom*) Once a process enters its pre-protocol, it will eventually be able to execute its critical section.
- Bounded waiting Once a process enters its pre-protocol, it can be *bypassed* by other processes at most f(n) times for some f. (n is the number of processes)

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

More liveness desiderata:

- Eventual Entry (or *starvation-freedom*) Once a process enters its pre-protocol, it will eventually be able to execute its critical section.
- Bounded waiting Once a process enters its pre-protocol, it can be *bypassed* by other processes at most f(n) times for some f. (n is the number of processes)
- Linear waiting No process can enter its critical section twice while another process is in its pre-protocol.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

More liveness desiderata:

- Eventual Entry (or *starvation-freedom*) Once a process enters its pre-protocol, it will eventually be able to execute its critical section.
- Bounded waiting Once a process enters its pre-protocol, it can be *bypassed* by other processes at most f(n) times for some f. (n is the number of processes)
- Linear waiting No process can enter its critical section twice while another process is in its pre-protocol.

Question

Which of the above are linear temporal properties?

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

From 2 to *n* Processes

In the 5th attempt of lecture 2 (a.k.a. Dekker's Algorithm) we used a shared variable turn to remember whose turn it would be to enter the CS in case of contention.

This turns out to be simple for 2 processes but complex for n.

Szymanski's Algorithm

Tie-Breaker (Peterson's) Algorithm for 2 Processes

Algorithm 1.1: Peterson's algorithm					
	boolean wantp \leftarrow false, wantq \leftarrow false				
	$integer\;last \gets 1$				
	p q				
forever do		forever do			
p1:	non-critical section	q1:	non-critical section		
p2:	$wantp \gets true$	q2:	$wantq \gets true$		
p3:	$last \gets 1$	q3:	$last \gets 2$		
p4:	await wantq = false or	q4:	await wantp = false or		
	$last \neq 1$		$last \neq 2$		
p5:	critical section	q5:	critical section		
p6:	$wantp \gets false$	q6:	wantq \leftarrow false		

Szymanski's Algorithm

Tie-Breaker Code for n Processes

Algo	prithm 1.2: Peterson's algorithm (n processes, process i)
	integer array in[1n] \leftarrow [0, ,0]
	integer array last $[1n] \leftarrow [0, \dots, 0]$
	forever do
p1:	non-critical section
	for all $j \in \{1n-1\}$
p2:	$in[i] \leftarrow j$
р3:	$last[j] \leftarrow i$
	for all processes $k \neq i$
p4:	await in[k] < j or last[j] \neq i
p5:	critical section
p6:	$in[i] \leftarrow 0$

Fast Algorithm

Szymanski's Algorithm

Properties of the Tie-Breaker Algorithm

Do we satisfy:

- Eventual entry?
- Bounded waiting?
- Linear waiting?

Fast Algorithm

Szymanski's Algorithm

Properties of the Tie-Breaker Algorithm

Do we satisfy:

- Eventual entry?
- Bounded waiting?
- Linear waiting?

Literature review

In "Some Myths about Famous Mutual Exclusion Algorithms" by Alagarsamy (2003), it is pointed out that the *n*-process variant does not ensure bounded waiting. We can use Promela to check that eventual entry holds (assuming weak fairness, fixing a small n), and that linear wait fails.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Algorithm 1.3: Simplified bakery algorithm (two processes)					
	integer np \leftarrow 0, nq \leftarrow 0				
p q					
forever do		forever do			
p1:	non-critical section	q1:	non-critical section		
p2:	$np \gets nq + 1$	q2:	$nq \gets np + 1$		
р3:	await nq $= 0$ or	q3:	await np $= 0$ or		
	$np \leq nq$		nq < np		
p4:	critical section	q4:	critical section		
p5:	$np \leftarrow 0$	q5:	$nq \leftarrow 0$		

Note the asymmetry here! Why do we need it? What if we don't have atomicity for each statement?

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Mutual Exclusion

The following are invariants

$$np = 0 \Leftrightarrow P@p1..2 \tag{1}$$

$$nq = 0 \Leftrightarrow Q@q1..2 \tag{2}$$

$$P@p4 \Rightarrow nq = 0 \lor np \le nq$$
(3)

$$Q@q4 \Rightarrow np = 0 \lor nq < np \tag{4}$$

and hence also $\neg(P@p4 \land Q@q4)$.

Bakery Algorithm 000000

Fast Algorithm

Szymanski's Algorithm

Mutual Exclusion

The following are invariants

$$np = 0 \Leftrightarrow P@p1..2 \tag{1}$$

$$np = 0 \Leftrightarrow P@p1..2 \tag{1}$$
$$nq = 0 \Leftrightarrow Q@q1..2 \tag{2}$$

$$P@p4 \Rightarrow nq = 0 \lor np \le nq \tag{3}$$

$$Q@q4 \Rightarrow np = 0 \lor nq < np \tag{4}$$

and hence also $\neg (P@p4 \land Q@q4)$.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Other Safety Properties

Deadlock freedom: The disjunction

 $nq = 0 \lor np \le nq \lor np = 0 \lor nq < np$ of the conditions on the **await** statements at p3/q3 is equivalent to \top . Hence it is not possible for both processes to be blocked there.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Other Safety Properties

Deadlock freedom: The disjunction

 $nq = 0 \lor np \le nq \lor np = 0 \lor nq < np$ of the conditions on the **await** statements at p3/q3 is equivalent to \top . Hence it is not possible for both processes to be blocked there.

Absence of unnecessary delay: Even if one process prefers to stay in its non-critical section, no deadlock will occur by the first two invariants (1) and (2).

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Eventual Entry

For p to fail to reach its CS despite wanting to, it needs to be stuck at p3 where it will evaluate the condition infinitely often by weak fairness. To remain stuck, each of these evaluations must yield false. In LTL:

$$\Box \Diamond \neg (nq = 0 \lor np \le nq)$$

which implies

$$\Box \diamondsuit nq \neq 0 , \text{ and} \tag{5}$$
$$\Box \diamondsuit nq < np . \tag{6}$$

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Eventual Entry

For p to fail to reach its CS despite wanting to, it needs to be stuck at p3 where it will evaluate the condition infinitely often by weak fairness. To remain stuck, each of these evaluations must yield false. In LTL:

$$\Box \Diamond \neg (nq = 0 \lor np \le nq)$$

which implies

$$\Box \diamondsuit nq \neq 0 \text{ , and} \tag{5}$$
$$\Box \diamondsuit nq < np \text{ .} \tag{6}$$

Because there is no deadlock, (5) implies that process q goes through infinitely many iterations of the main loop without getting lost in the non-critical section.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Eventual Entry

For p to fail to reach its CS despite wanting to, it needs to be stuck at p3 where it will evaluate the condition infinitely often by weak fairness. To remain stuck, each of these evaluations must yield false. In LTL:

$$\Box \Diamond \neg (nq = 0 \lor np \le nq)$$

which implies

$$\Box \diamondsuit nq \neq 0 \text{ , and} \tag{5}$$
$$\Box \diamondsuit nq < np \text{ .} \tag{6}$$

Because there is no deadlock, (5) implies that process q goes through infinitely many iterations of the main loop without getting lost in the non-critical section. But then it must set nq to the constant np + 1. From then onwards it is no longer possible to fail the test ($nq = 0 \lor np \le nq$), contradiction.

Fast Algorithm

Szymanski's Algorithm

$2 \rightarrow n$				
Algorithm 1.4: Simplified bakery algorithm (<i>N</i> processes)				
integer array[1n] number \leftarrow [0,,0]				
	loop forever			
p1:	non-critical section			
p2:	$number[i] \gets max(number) + 1$			
р3:	for all <i>other</i> processes j			
p4:	await (number[j] $=$ 0) or (number[i] \ll number[j])			
p5:	critical section			
рб:	number[i] \leftarrow 0			

once again relying on atomicity of non-LCR lines of Ben-Ari pseudo-code; \ll breaks ties using PIDs:

$$\mathsf{a}[i] \ll \mathsf{a}[j] \quad \Leftrightarrow \quad (\mathsf{a}[i] < \mathsf{a}[j]) \lor (\mathsf{a}[i] = \mathsf{a}[j] \land i < j)$$

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

An Implementable Algorithm

Algorithm 1.5: Lamport's bakery algorithm				
	boolean array[1n] choosing \leftarrow [false,,false]			
	integer array[1n] number \leftarrow [0, ,0]			
	forever do			
p1:	non-critical section			
p2:	$choosing[i] \leftarrow true$			
р3:	$number[i] \gets 1 + max(number)$			
p4:	$choosing[i] \leftarrow false$			
p5:	for all other processes j			
p6:	<pre>await choosing[j] = false</pre>			
p7:	await (number[j] = 0) or (number[i] \ll number[j])			
p8:	critical section			
p9:	number[i] \leftarrow 0			

Fast Algorithm

Szymanski's Algorithm

Properties of Lamport's bakery algorithm

"The algorithm has the remarkable property that if a read and a write operation to a single memory location occur simultaneously, then only the write operation must be performed correctly. The read may return any arbitrary value!"

Lamport, 1974 (CACM)

Cons:

 $\mathcal{O}(n)$ pre-protocol; unbounded ticket numbers

Assertion 1:

If $P_k@p1..2 \land P_i@p5..9$ and k then reaches p5..9 while i is still there, then number[i] < number[k]

Assertion 2:

 P_i @p8..9 \land P_k @p5..9 \land $i \neq k \Rightarrow$ (number[i], i) \ll (number[k], k)

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

When contention is low...

access to the CS should be fast, that is, consist of a fixed number of steps (aka O(1)) with no awaits.

Bakery Algorithm

Fast Algorithm ○●○○ Szymanski's Algorithm

Almost correct fast solution

Algorithm 1.6: Fast algorithm for two processes (outline)					
	integer gate $1 \leftarrow 0$, gate $2 \leftarrow 0$				
р			q		
forever do		forever do			
non-critical section			non-critical section		
p1:	$gate1 \gets p$	q1:	$gate1 \gets q$		
p2:	if gate2 $ eq$ 0 goto p1	q2:	if gate2 $ eq$ 0 goto q1		
p3:	$gate2 \gets p$	q3:	$gate2 \gets q$		
p4:	$\mathbf{if} gate1 \neq p$	q4:	${\sf if} {\sf gate1} \neq {\sf q}$		
p5:	if gate $2 eq$ p $fgoto$ p 1	q5:	if gate2 $ eq$ q goto q1		
	critical section		critical section		
рб:	$gate2 \gets 0$	q6:	$gate2 \gets 0$		

Bakery Algorithm

Fast Algorithm ○○●○ Szymanski's Algorithm

Invariants

$$P@p5 \land gate2 = p \Rightarrow \neg(Q@q3 \lor Q@q4 \lor Q@q6)$$
(7)

$$Q@q5 \land gate2 = q \Rightarrow \neg (P@p3 \lor P@p4 \lor P@p6)$$
(8)

$$P@p4 \land gate1 = p \Rightarrow gate2 \neq 0 \tag{9}$$

$$P@p6 \Rightarrow gate2 \neq 0 \land \neg Q@q6 \land$$

$$(Q@q3 \lor Q@q4 \Rightarrow gate1 \neq q)$$
 (10)

$$Q@q4 \land gate1 = q \Rightarrow gate2 \neq 0$$

$$Q@q6 \Rightarrow gate2 \neq 0 \land \neg P@p6 \land$$
(11)

$$(P@p3 \lor P@p4 \Rightarrow gate1 \neq p)$$
(12)

Mutual exclusion follows from invariants (10) and (12).

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Invariants

$$P@p5 \land gate2 = p \Rightarrow \neg(Q@q3 \lor Q@q4 \lor Q@q6)$$
(7)

$$Q@q5 \land gate2 = q \Rightarrow \neg (P@p3 \lor P@p4 \lor P@p6)$$
(8)

$$P@p4 \land gate1 = p \Rightarrow gate2 \neq 0 \tag{9}$$

$$P@p6 \Rightarrow gate2 \neq 0 \land \neg Q@q6 \land$$

$$(Q@q3 \lor Q@q4 \Rightarrow gate1 \neq q)$$
 (10)

$$Q@q4 \land gate1 = q \Rightarrow gate2 \neq 0$$
(11)

$$Q@q6 \Rightarrow gate2 \neq 0 \land \neg P@p6 \land$$

$$(P@p3 \lor P@p4 \Rightarrow gate1 \neq p)$$
(12)

Mutual exclusion follows from invariants (10) and (12).

Problem: (7) and (8) aren't actually invariants of this algorithm.

Peterso	n's Algorith	m Bakery Algorithm	Fa	ist Algorithm ⊃O●	Szymanski's Algorithm	
Algorithm 1.7: Fast algorithm for two processes						
	integer gate $1 \leftarrow 0$, gate $2 \leftarrow 0$					
boolean wantp \leftarrow false, wantq \leftarrow false						
ĺ		р		q		
	p1:	$gate1 \gets p$	q1:	$gate1 \gets q$		
		$wantp \gets true$		$wantq \gets true$		
	p2:	if gate2 $ eq$ 0	q2:	if gate2 $ eq$ 0		
		$wantp \gets false$		$wantq \gets fal$	se	
		goto p1		goto q1		
	р3:	$gate2 \gets p$	q3:	$gate2 \gets q$		
	p4:	$\mathbf{if} gate1 \neq p$	q4:	if gate $1 eq q$		
		$wantp \gets false$		$wantq \gets fal$	se	
		await wantq = false		await wantp	= false	
	p5:	if gate2 $ eq$ p goto p1	q5:	if gate2 \neq q	goto q1	
		else wantp \leftarrow true		else wantq <	— true	
		critical section		critical section		
	рб:	$gate2 \gets 0$	q6:	$gate2 \gets 0$		
		$wantp \gets false$		$wantq \gets false$		

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Mutex review

None of the mutual exclusion algorithms presented so far scores full marks.

Selected problems:

- have a $\mathcal{O}(n^2)$ pre-protocol (Peterson)
- rely on special instruction (e.g. xc, ts, etc.)
- use unbounded ticket numbers (e.g. bakery)
- sacrifice eventual entry (e.g. fast)

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Szymanski's Algorithm

- has none of these problems,
- enforces linear wait,
- requires at most 4p 「^p/_n] writes for p CS entries by n competing processes, and
- can be made immune to process failures and restarts as well as read errors occurring during writes.

How does he do it?

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

"The prologue is modeled after a waiting room with two doors. [...] All processes requesting entry to the CS at roughly the same time gather first in the waiting room. Then, when there are no more processes requesting entry, waiting processes move to the end of the prologue. From there, one by one, they enter their CS. Any other process requesting entry to its CS at that time has to wait in the initial part of the prologue (before the waiting room)." Szymanski, 1988, in ICCS

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Phases of the pre-protocol

- announce intention to enter CS
- enter waiting room through door 1; wait there for other processes
- Iast to enter the waiting room closes door 1
- In the order of PIDs, leave waiting room through door 2 to enter CS

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

Shared variables

Each process i exclusively writes a variable called flag, which is read by all the other processes. It assumes one of five values:

- **0** denoting that i is in its non-CS,
- ${\bf 1}$ declares i's intention to enter the CS
- 2 shows that i waits for other processes to enter the waiting room
- 3 denotes that i has just entered the waiting room
- 4 indicates that i left the waiting room

Peterso	n's Algorithn	Bakery Algorithm	Fast Algorithm	Szymanski's Algorithm ○○○○○●○○○
[Algori	thm 1.8: Szymanski's algori	thm (n prod	cesses, process i)
		integer array flag $[1n] \leftarrow$	- [0,,0]	
ĺ	fo	rever do		
	p1:	non-critical section		
	p2:	flag[i]:=1		
	р3:	await ∀j. flag[j] <3		
	p4:	flag[i]:=3		
	p5:	if $\exists j$. flag[j] = 1 then		
	рб:	flag[i]:=2		
	p7:	await ∃j. flag[j]=4		
	p8:	flag[i]:=4		
	p9:	await ∀j <i. <2<="" flag[j]="" th=""><th></th><th></th></i.>		
	p10:	critical section		
	p11:	await $\forall j > i$. flag[j] <2 or flag[j] >3	
	p12:	flag[i]:=0		

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

How to implement the atomic tests

The atomic tests can be implemented by loops. The order of the tests is crucial for the mutual exclusion property. But which order? Szymanski's original paper is unclear on the matter.

See Promela Code samples (and your homework ;).

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

How to prove mutual exclusion

This is reasonably hard. So hard indeed that even Turing Award winners (Manna and Pnueli) published about solving the problem (with non-atomic tests), using the "one big invariant" method. See the de Roever book pp.157–164 for a proof using the Owicki-Gries method on (parameterized) transition diagrams (with atomic tests).

What is hard about the proof? Finding the assertions.

Bakery Algorithm

Fast Algorithm

Szymanski's Algorithm

What now?

- You should be making progress on Assignment 0 (due Monday) and Homework 2 (due Friday).
- You can (soon) find Promela code on the website for most of the algos discussed today.
- New questions about critical sections will be up soon, due Friday next week.