
Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Some More Critical Section Solutions

Johannes Åman Pohjola
CSE, UNSW
Term 2 2022

1



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Where we are at

We’ve discussed the critical section problem, the four properties of
critical section solutions, and some solutions for two processes.

In this lecture, we will see some of the classic critical section
solutions for n processes.

2



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Where we are at

We’ve discussed the critical section problem, the four properties of
critical section solutions, and some solutions for two processes.

In this lecture, we will see some of the classic critical section
solutions for n processes.

3



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

More liveness desiderata:

Eventual Entry (or starvation-freedom) Once a process
enters its pre-protocol, it will eventually be able to execute its
critical section.

Bounded waiting Once a process enters its pre-protocol, it
can be bypassed by other processes at most f (n) times for
some f . (n is the number of processes)

Linear waiting No process can enter its critical section twice
while another process is in its pre-protocol.

Question

Which of the above are linear temporal properties?

4



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

More liveness desiderata:

Eventual Entry (or starvation-freedom) Once a process
enters its pre-protocol, it will eventually be able to execute its
critical section.

Bounded waiting Once a process enters its pre-protocol, it
can be bypassed by other processes at most f (n) times for
some f . (n is the number of processes)

Linear waiting No process can enter its critical section twice
while another process is in its pre-protocol.

Question

Which of the above are linear temporal properties?

5



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

More liveness desiderata:

Eventual Entry (or starvation-freedom) Once a process
enters its pre-protocol, it will eventually be able to execute its
critical section.

Bounded waiting Once a process enters its pre-protocol, it
can be bypassed by other processes at most f (n) times for
some f . (n is the number of processes)

Linear waiting No process can enter its critical section twice
while another process is in its pre-protocol.

Question

Which of the above are linear temporal properties?

6



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

More liveness desiderata:

Eventual Entry (or starvation-freedom) Once a process
enters its pre-protocol, it will eventually be able to execute its
critical section.

Bounded waiting Once a process enters its pre-protocol, it
can be bypassed by other processes at most f (n) times for
some f . (n is the number of processes)

Linear waiting No process can enter its critical section twice
while another process is in its pre-protocol.

Question

Which of the above are linear temporal properties?

7



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

From 2 to n Processes

In the 5th attempt of lecture 2 (a.k.a. Dekker’s Algorithm) we
used a shared variable turn to remember whose turn it would be
to enter the CS in case of contention.
This turns out to be simple for 2 processes but complex for n.

8



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Tie-Breaker (Peterson’s) Algorithm for 2 Processes

Algorithm 1.1: Peterson’s algorithm
boolean wantp ← false, wantq ← false
integer last ← 1

p q
forever do forever do

p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: last ← 1 q3: last ← 2
p4: await wantq = false or q4: await wantp = false or

last 6= 1 last 6= 2
p5: critical section q5: critical section
p6: wantp ← false q6: wantq ← false

9



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Tie-Breaker Code for n Processes

Algorithm 1.2: Peterson’s algorithm (n processes, process i)
integer array in[1..n] ← [0,. . . ,0]
integer array last[1..n] ← [0,. . . ,0]

forever do
p1: non-critical section

for all j ∈ {1..n− 1}
p2: in[i] ← j
p3: last[j] ← i

for all processes k 6= i
p4: await in[k] < j or last[j] 6= i
p5: critical section
p6: in[i] ← 0

10



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Properties of the Tie-Breaker Algorithm

Do we satisfy:

Eventual entry?

Bounded waiting?

Linear waiting?

Literature review

In “Some Myths about Famous Mutual Exclusion Algorithms” by
Alagarsamy (2003), it is pointed out that the n-process variant
does not ensure bounded waiting. We can use Promela to check
that eventual entry holds (assuming weak fairness, fixing a small
n), and that linear wait fails.

11



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Properties of the Tie-Breaker Algorithm

Do we satisfy:

Eventual entry?

Bounded waiting?

Linear waiting?

Literature review

In “Some Myths about Famous Mutual Exclusion Algorithms” by
Alagarsamy (2003), it is pointed out that the n-process variant
does not ensure bounded waiting. We can use Promela to check
that eventual entry holds (assuming weak fairness, fixing a small
n), and that linear wait fails.

12



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Algorithm 1.3: Simplified bakery algorithm (two processes)
integer np ← 0, nq ← 0

p q
forever do forever do

p1: non-critical section q1: non-critical section
p2: np ← nq + 1 q2: nq ← np + 1
p3: await nq = 0 or q3: await np = 0 or

np ≤ nq nq < np
p4: critical section q4: critical section
p5: np ← 0 q5: nq ← 0

Note the asymmetry here! Why do we need it?
What if we don’t have atomicity for each statement?

13



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Mutual Exclusion

The following are invariants

np = 0⇔ P@p1..2 (1)

nq = 0⇔ Q@q1..2 (2)

P@p4⇒ nq = 0 ∨ np ≤ nq (3)

Q@q4⇒ np = 0 ∨ nq < np (4)

and hence also ¬(P@p4 ∧ Q@q4).

14



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Mutual Exclusion

The following are invariants

np = 0⇔ P@p1..2 (1)

nq = 0⇔ Q@q1..2 (2)

P@p4⇒ nq = 0 ∨ np ≤ nq (3)

Q@q4⇒ np = 0 ∨ nq < np (4)

and hence also ¬(P@p4 ∧ Q@q4).

15



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Other Safety Properties

Deadlock freedom: The disjunction
nq = 0 ∨ np ≤ nq ∨ np = 0 ∨ nq < np of the conditions on the
await statements at p3/q3 is equivalent to >. Hence it is not
possible for both processes to be blocked there.

Absence of unnecessary delay: Even if one process prefers to
stay in its non-critical section, no deadlock will occur by the first
two invariants (1) and (2).

16



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Other Safety Properties

Deadlock freedom: The disjunction
nq = 0 ∨ np ≤ nq ∨ np = 0 ∨ nq < np of the conditions on the
await statements at p3/q3 is equivalent to >. Hence it is not
possible for both processes to be blocked there.

Absence of unnecessary delay: Even if one process prefers to
stay in its non-critical section, no deadlock will occur by the first
two invariants (1) and (2).

17



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Eventual Entry
For p to fail to reach its CS despite wanting to, it needs to be
stuck at p3 where it will evaluate the condition infinitely often by
weak fairness. To remain stuck, each of these evaluations must
yield false. In LTL:

23¬(nq = 0 ∨ np ≤ nq)

which implies

23nq 6= 0 , and (5)

23nq < np . (6)

Because there is no deadlock, (5) implies that process q goes
through infinitely many iterations of the main loop without getting
lost in the non-critical section. But then it must set nq to the
constant np + 1. From then onwards it is no longer possible to fail
the test (nq = 0 ∨ np ≤ nq), contradiction.

18



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Eventual Entry
For p to fail to reach its CS despite wanting to, it needs to be
stuck at p3 where it will evaluate the condition infinitely often by
weak fairness. To remain stuck, each of these evaluations must
yield false. In LTL:

23¬(nq = 0 ∨ np ≤ nq)

which implies

23nq 6= 0 , and (5)

23nq < np . (6)

Because there is no deadlock, (5) implies that process q goes
through infinitely many iterations of the main loop without getting
lost in the non-critical section.

But then it must set nq to the
constant np + 1. From then onwards it is no longer possible to fail
the test (nq = 0 ∨ np ≤ nq), contradiction.

19



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Eventual Entry
For p to fail to reach its CS despite wanting to, it needs to be
stuck at p3 where it will evaluate the condition infinitely often by
weak fairness. To remain stuck, each of these evaluations must
yield false. In LTL:

23¬(nq = 0 ∨ np ≤ nq)

which implies

23nq 6= 0 , and (5)

23nq < np . (6)

Because there is no deadlock, (5) implies that process q goes
through infinitely many iterations of the main loop without getting
lost in the non-critical section. But then it must set nq to the
constant np + 1. From then onwards it is no longer possible to fail
the test (nq = 0 ∨ np ≤ nq), contradiction.

20



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

2→ n
Algorithm 1.4: Simplified bakery algorithm (N processes)

integer array[1..n] number ← [0,. . . ,0]
loop forever

p1: non-critical section
p2: number[i] ← max(number) + 1
p3: for all other processes j
p4: await (number[j] = 0) or (number[i] � number[j])
p5: critical section
p6: number[i] ← 0

once again relying on atomicity of non-LCR lines of Ben-Ari
pseudo-code; � breaks ties using PIDs:

a[i ]� a[j ] ⇔ (a[i ] < a[j ]) ∨ (a[i ] = a[j ] ∧ i < j)

21



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

An Implementable Algorithm

Algorithm 1.5: Lamport’s bakery algorithm
boolean array[1..n] choosing ← [false,. . . ,false]
integer array[1..n] number ← [0,. . . ,0]

forever do
p1: non-critical section
p2: choosing[i] ← true
p3: number[i] ← 1 + max(number)
p4: choosing[i] ← false
p5: for all other processes j
p6: await choosing[j] = false
p7: await (number[j] = 0) or (number[i] � number[j])
p8: critical section
p9: number[i] ← 0

22



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Properties of Lamport’s bakery algorithm

“The algorithm has the remarkable property that if a read and
a write operation to a single memory location occur simultane-
ously, then only the write operation must be performed correctly.
The read may return any arbitrary value!”

Lamport, 1974 (CACM)

Cons:

O(n) pre-protocol; unbounded ticket numbers

Assertion 1:

If Pk@p1..2 ∧ Pi@p5..9 and k then reaches p5..9 while i is still
there, then number[i ] < number[k]

Assertion 2:

Pi@p8..9 ∧ Pk@p5..9 ∧ i 6= k ⇒ (number[i ], i)� (number[k], k)

23



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

When contention is low. . .

access to the CS should be fast, that is, consist of a fixed number
of steps (aka O(1)) with no awaits.

24



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Almost correct fast solution

Algorithm 1.6: Fast algorithm for two processes (outline)
integer gate1 ← 0, gate2 ← 0
p q

forever do forever do
non-critical section non-critical section

p1: gate1 ← p q1: gate1 ← q
p2: if gate2 6= 0 goto p1 q2: if gate2 6= 0 goto q1
p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q
p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0

25



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Invariants

P@p5 ∧ gate2 = p ⇒ ¬(Q@q3 ∨ Q@q4 ∨ Q@q6) (7)

Q@q5 ∧ gate2 = q ⇒ ¬(P@p3 ∨ P@p4 ∨ P@p6) (8)

P@p4 ∧ gate1 = p ⇒ gate2 6= 0 (9)

P@p6⇒ gate2 6= 0 ∧ ¬Q@q6 ∧
(Q@q3 ∨ Q@q4⇒ gate1 6= q) (10)

Q@q4 ∧ gate1 = q ⇒ gate2 6= 0 (11)

Q@q6⇒ gate2 6= 0 ∧ ¬P@p6 ∧
(P@p3 ∨ P@p4⇒ gate1 6= p) (12)

Mutual exclusion follows from invariants (10) and (12).

Problem: (7) and (8) aren’t actually invariants of this algorithm.

26



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Invariants

P@p5 ∧ gate2 = p ⇒ ¬(Q@q3 ∨ Q@q4 ∨ Q@q6) (7)

Q@q5 ∧ gate2 = q ⇒ ¬(P@p3 ∨ P@p4 ∨ P@p6) (8)

P@p4 ∧ gate1 = p ⇒ gate2 6= 0 (9)

P@p6⇒ gate2 6= 0 ∧ ¬Q@q6 ∧
(Q@q3 ∨ Q@q4⇒ gate1 6= q) (10)

Q@q4 ∧ gate1 = q ⇒ gate2 6= 0 (11)

Q@q6⇒ gate2 6= 0 ∧ ¬P@p6 ∧
(P@p3 ∨ P@p4⇒ gate1 6= p) (12)

Mutual exclusion follows from invariants (10) and (12).

Problem: (7) and (8) aren’t actually invariants of this algorithm.

27



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Algorithm 1.7: Fast algorithm for two processes
integer gate1 ← 0, gate2 ← 0
boolean wantp ← false, wantq ← false
p q

p1: gate1 ← p q1: gate1 ← q
wantp ← true wantq ← true

p2: if gate2 6= 0 q2: if gate2 6= 0
wantp ← false wantq ← false
goto p1 goto q1

p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q

wantp ← false wantq ← false
await wantq = false await wantp = false

p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1
else wantp ← true else wantq ← true

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0

wantp ← false wantq ← false

28



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Mutex review

None of the mutual exclusion algorithms presented so far scores
full marks.
Selected problems:

have a O(n2) pre-protocol (Peterson)

rely on special instruction (e.g. xc, ts, etc.)

use unbounded ticket numbers (e.g. bakery)

sacrifice eventual entry (e.g. fast)

29



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Szymanski’s Algorithm

has none of these problems,

enforces linear wait,

requires at most 4p − dpne writes for p CS entries by n
competing processes, and

can be made immune to process failures and restarts as well
as read errors occurring during writes.

How does he do it?

30



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Idea

“The prologue is modeled after a waiting room with two doors.
[. . . ] All processes requesting entry to the CS at roughly the
same time gather first in the waiting room. Then, when there
are no more processes requesting entry, waiting processes move
to the end of the prologue. From there, one by one, they enter
their CS. Any other process requesting entry to its CS at that
time has to wait in the initial part of the prologue (before the
waiting room).” Szymanski, 1988, in ICCS

31



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Phases of the pre-protocol

1 announce intention to enter CS

2 enter waiting room through door 1; wait there for other
processes

3 last to enter the waiting room closes door 1

4 in the order of PIDs, leave waiting room through door 2 to
enter CS

32



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Shared variables

Each process i exclusively writes a variable called flag, which is
read by all the other processes. It assumes one of five values:

0 denoting that i is in its non-CS,

1 declares i’s intention to enter the CS

2 shows that i waits for other processes to enter the waiting
room

3 denotes that i has just entered the waiting room

4 indicates that i left the waiting room

33



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

Algorithm 1.8: Szymanski’s algorithm (n processes, process i)
integer array flag[1..n] ← [0,. . . ,0]

forever do
p1: non-critical section
p2: flag[i]:=1
p3: await ∀j. flag[j] <3
p4: flag[i]:=3
p5: if ∃j. flag[j] = 1 then
p6: flag[i]:=2
p7: await ∃j. flag[j]=4
p8: flag[i]:=4
p9: await ∀j<i. flag[j] <2
p10: critical section
p11: await ∀j>i. flag[j] <2 or flag[j] >3
p12: flag[i]:=0

34



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

How to implement the atomic tests

The atomic tests can be implemented by loops. The order of the
tests is crucial for the mutual exclusion property. But which order?
Szymanski’s original paper is unclear on the matter.
See Promela Code samples (and your homework ;).

35



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

How to prove mutual exclusion

This is reasonably hard. So hard indeed that even Turing Award
winners (Manna and Pnueli) published about solving the problem
(with non-atomic tests), using the “one big invariant” method.
See the de Roever book pp.157–164 for a proof using the
Owicki-Gries method on (parameterized) transition diagrams (with
atomic tests).
What is hard about the proof? Finding the assertions.

36



Peterson’s Algorithm Bakery Algorithm Fast Algorithm Szymanski’s Algorithm

What now?

You should be making progress on Assignment 0 (due
Monday) and Homework 2 (due Friday).

You can (soon) find Promela code on the website for most of
the algos discussed today.

New questions about critical sections will be up soon, due
Friday next week.

37


	Peterson's Algorithm
	Bakery Algorithm
	Fast Algorithm
	Szymanski's Algorithm

